δύο

Validation

No

Last modification

Fri, 01/09/2026 - 22:22

Word-form

δίχα

Transliteration (Word)

dikha

English translation (word)

in half, into halves

Transliteration (Etymon)

duo

English translation (etymon)

two

Author

Aristotle

Century

4 BCE

Source

Idem

Ref.

Topica VI.4, 142b11–19

Ed.

Ross, Aristotelis Topica et Sophistici Elenchi, Oxford 1958, p. 124. / Brunschwig, Aristote: Topiques. Tome II: Livres V-VIII. Paris 2007, pp. 53–4.

Quotation

μοως δ κα ε δι τν ποκτω τ πνω ρισται, οον ρτιον ριθμν τν δχα διαιρομενον τ γαθν ξιν ρετς· τ τε γρ δχα π τν δο εληπται, ρτων ντων, κα ρετ γαθν τ στιν, σθ ποκτω τατα κενων στν. τι δ νγκη τν τ ποκτω χρμενον κα ατ χρσθαι. τε γρ τ ρετ χρμενος χρται τ γαθ, πειδ γαθν τι ρετ, μοως δ κα τ δχα χρμενος τ ρτίῳ χρται, πειδ ες δο διρσθαι σημανει τ δχα διρσθαι, τ δ δο ρτι στιν.

Translation (En)

Similarly, look to see whether he has defined a higher one through a lower one—for example, even number as ‘what is bipartitely divisible’; or good as ‘a state of virtue’; for bipartitely is derived from two, which is an even number, and virtue is a sort of good, so that the former are lower than the latter. Further, in making use of what is lower than a thing, one will necessarily make use of the thing itself as well. For a person who makes use of virtue, makes use of good, since virtue is a sort of good, and, similarly, a person who makes use of bipartitely makes use of even, since ‘bipartitely divisible’ signifies divisible by two, and two is an even number.

(transl. Reeve 2024, 98)

Other translation(s)

De même encore, si l’on a défini ce qui est supérieur à l’aide de choses qui lui sont inférieures, par exemple le nombre pair comme celui qui est divisible de façon bipartite, ou le bien comme la possession de l’excellence ; car bipartite se comprend a partir de deux, qui est pair, et l’excellence est une forme du bien, de sorte que ces choses-là sont subordonnées à celles-ci. En outre, celui qui se sert de ce qui est subordonné à une chose donnée se sert nécessairement aussi de cette chose elle-même. De fait, celui qui se sert de l’excellence se sert du bien, puisque l’excellence est un bien ; de même, celui qui se sert de «bipartite» se sert du pair, puisqu’être divisible de façon bipartite signifie être divisible par deux, et que deux est pair.

(transl. Brunschwig 2007, 53–4)

Comment

In Topica VI.4 (142b11–19), Aristotle reports an etymology according to which δίχα (‘in half’) is derived from δύο (‘two’). The etymology rests on a semantic reduction rather than on strict morphological derivation: δίχα διαιρούμενον is glossed as ‘divided in half,’ and since δύο is an even number (ἄρτιον), the term δίχα is taken to carry an implicit reference to evenness. Aristotle treats this derivation as involving dependence on a ‘lower’ (derivative) term (δύο). The passage reflects an Academic background, in which phonological proximity and semantic containment suffice for etymological explanation.

Contextualization of the passage:

(1) Aristotle’s argument at Topica VI.4, 142b11–19 is dialectical rather than doctrinal: it proceeds from the interlocutor’s accepted commitments, not from Aristotle’s own views. These include the claims that an even number is defined as ὁ δίχα διαιρούμενον, that δίχα is derived from δύο, and that a definition may not employ derivative terms. Aristotle attributes these assumptions to his interlocutors—most plausibly Academic philosophers such as Plato or Xenocrates—and derives a contradiction from them.

(2) The definition of even number targeted by Aristotle belongs to a Platonic-Academic context. Although it is not preserved verbatim in Plato, Plato treats δίχα διαιρούμενον (‘divisible in half’) and διαιρούμενος εἰς ἴσα δύο μέρη (‘divisible into two equal parts’) as equivalent and defines the even number accordingly (Leges 895e1–3 Burnet). Euclid later adopts precisely the definition attacked in Aristotle: ἄρτιος ἀριθμός ἐστιν ὁ δίχα διαιρούμενος (Elementa VII, Def. 6; Euclidis opera omnia II, 184.11 Heiberg).

Parallels

There are no parallels.

Bibliography

Beekes, R. 2010. Etymological Dictionary of Greek, 2 vol. Leiden / Boston.

Brunschwig, J. (ed., tr.) 2007. Aristote: Topiques. Tome II: Livres V-VIII. Paris.

Burnet, J. (ed.) 1900–1906. Platonis Opera, 5 vol., Oxford.

Heiberg, J.L. (ed., tr.) 1876–1988. Euclidis opera omnia: Euclidis Elementa, 4 vol., Leipzig.

Reeve, C.D.C. (tr.) 2024. Aristotle’s Dialectic: Topics, Sophistical Refutations, and Related Texts. Indianapolis / Cambridge.

Ross, W.D. (ed.) 1958. Aristotelis Topica et Sophistici Elenchi. Oxford.

Triantafyllidis, M. 1998. Λεξικό της κοινής Νεοελληνικής (Dictionary of Standard Modern Greek). Thessaloniki.

Modern etymology

According to Beekes, δίχα is cognate with δύο at the Indo-European level but already opaque in Greek. Hence, it is incorrect to say that δίχα is derived from δύo within Greek; they are cognates, not a direct derivation.

Persistence in Modern Greek

δίχα does not survive as an independent Modern Greek adverb, but its meaning ‘in half’ persists derivationally and productively in forms such as διχάζω, διχασμός, διχάλα, διχαλωτός, while δίχως preserves it only in a fossilized form. (Triantafyllidis)

Entry By

Benjamin Wilck